46 research outputs found

    Clinical Utility of Melatonin in Fibromyalgia Diagnosis

    Get PDF
           Fibromyalgia syndrome (FMS) is a chronic disease with an unknown etiology, which is characterized by reduced pain threshold (hyperallgesia) & pain with normally innocuous stimuli (allodynia).This diffuse pain is often disease associated  with wide range of  other symptoms including fatigue, sleep disturbance, stiffness& more.FMS often occur concomitantly  with other rheumatologic disease such as rheumatoid arthritis(RA), systemic lupus erthymatosus(SLE).       The pineal hormone melatonin (MT) exerts a variety of effects on the immune system. MT activates immune cells and enhances inflammatory cytokine and nitric oxide production.Methods: We were studied 75 subjects, 55 of subjects were FMS patients defined by the American Colleague of Rheumatology (ACR 2010) criteria. Patients' mean age was 32.5 ± 13.9 years. They were classified into two groups: Group I of 25  primary FMS patients . Group II of 30 secondary FMS patients with other rheumatologic disease such as RA, SLE. Twenty age and sex matched healthy individuals were included in the study as a control group.Results:Mean Melatonin titers were significantly reduced (p<0.0001) in primary FMs patients compared to the controls (21.32vs. 30.9 pg/ml), but they were significantly elevated (p<0.0001) in secondary FMS compared to controls (138.1vs.30.9 pg/ml). Our data imposed that, in 1ry FMS there were negative correlations of MT titers with tender points (r=-0.848**,p<0.0001), sleep disturbance(r=-0.963**, p< 0.0001**), Fatigue (r= -0.972**, p<0.001**), WPI (r= -0,953 **, p<0.0001) and SS (r=-0.901**, p< 0.0001). Conclusions:In primary FMS patients melatonin level is lower than melatonin level in control, but MT level is high in secondary FMS patients. There was a negative correlation between MT with tender points, sleep disturbance, fatigue, SS & WPI. But there was a positive correlation between MT & cognitive symptoms

    Probiotic modulation of dendritic cell function is influenced by ageing

    Get PDF
    Dendritic cells (DCs) are critical for the generation of T-cell responses. DC function may be modulated by probiotics, which confer health benefits in immunocompromised individuals, such as the elderly. This study investigated the effects of four probiotics, Bifidobacterium longum bv. infantis CCUG 52486, B. longum SP 07/3, L. rhamnosus GG (L.GG) and L. casei Shirota (LcS) on DC function in an allogeneic mixed leucocyte reaction (MLR) model, using DCs and T-cells from young and older donors in different combinations. All four probiotics enhanced expression of CD40, CD80 and CCR7 on both young and older DCs, but enhanced cytokine production (TGF-β, TNF-α) by old DCs only. LcS induced IL-12 and IFNγ production by DC to a greater degree than other strains, while Bifidobacterium longum bv. infantis CCUG 52486 favoured IL-10 production. Stimulation of young T cells in an allogeneic MLR with DC was enhanced by probiotic pretreatment of old DCs, which demonstrated greater activation (CD25) than untreated controls. However, pretreatment of young or old DCs with LPS or probiotics failed to enhance the proliferation of T-cells derived from older donors. In conclusion, this study demonstrates that ageing increases the responsiveness of DCs to probiotics, but this is not sufficient to overcome the impact of immunosenescence in the MLR

    An intranasal selective antisense oligonucleotide impairs lung cyclooxygenase-2 production and improves inflammation, but worsens airway function, in house dust mite sensitive mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite its reported pro-inflammatory activity, cyclooxygenase (COX)-2 has been proposed to play a protective role in asthma. Accordingly, COX-2 might be down-regulated in the airway cells of asthmatics. This, together with results of experiments to assess the impact of COX-2 blockade in ovalbumin (OVA)-sensitized mice in vivo, led us to propose a novel experimental approach using house dust mite (HDM)-sensitized mice in which we mimicked altered regulation of COX-2.</p> <p>Methods</p> <p>Allergic inflammation was induced in BALBc mice by intranasal exposure to HDM for 10 consecutive days. This model reproduces spontaneous exposure to aeroallergens by asthmatic patients. In order to impair, but not fully block, COX-2 production in the airways, some of the animals received an intranasal antisense oligonucleotide. Lung COX-2 expression and activity were measured along with bronchovascular inflammation, airway reactivity, and prostaglandin production.</p> <p>Results</p> <p>We observed impaired COX-2 mRNA and protein expression in the lung tissue of selective oligonucleotide-treated sensitized mice. This was accompanied by diminished production of mPGE synthase and PGE<sub>2 </sub>in the airways. In sensitized mice, the oligonucleotide induced increased airway hyperreactivity (AHR) to methacholine, but a substantially reduced bronchovascular inflammation. Finally, mRNA levels of hPGD synthase remained unchanged.</p> <p>Conclusion</p> <p>Intranasal antisense therapy against COX-2 in vivo mimicked the reported impairment of COX-2 regulation in the airway cells of asthmatic patients. This strategy revealed an unexpected novel dual effect: inflammation was improved but AHR worsened. This approach will provide insights into the differential regulation of inflammation and lung function in asthma, and will help identify pharmacological targets within the COX-2/PG system.</p

    Gut mucosal DAMPs in IBD: From mechanisms to therapeutic implications

    Get PDF
    Endogenous damage-associated molecular patterns (DAMPs) are released during tissue damage and have increasingly recognized roles in the etiology of many human diseases. The inflammatory bowel diseases (IBD), ulcerative colitis (UC) and Crohn’s disease (CD), are immune-mediated conditions where high levels of DAMPs are observed. DAMPs such as calprotectin (S100A8/9) have an established clinical role as a biomarker in IBD. In this review, we use IBD as an archetypal common chronic inflammatory disease to focus on the conceptual and evidential importance of DAMPs in pathogenesis and why DAMPs represent an entirely new class of targets for clinical translation. </p

    The role of flavor and fragrance chemicals in TRPA1 (transient receptor potential cation channel, member A1) activity associated with allergies

    Get PDF
    TRPA1 has been proposed to be associated with diverse sensory allergic reactions, including thermal (cold) nociception, hearing and allergic inflammatory conditions. Some naturally occurring compounds are known to activate TRPA1 by forming a Michael addition product with a cysteine residue of TRPA1 through covalent protein modification and, in consequence, to cause allergic reactions. The anti-allergic property of TRPA1 agonists may be due to the activation and subsequent desensitization of TRPA1 expressed in sensory neurons. In this review, naturally occurring TRPA1 antagonists, such as camphor, 1,8-cineole, menthol, borneol, fenchyl alcohol and 2-methylisoborneol, and TRPA1 agonists, including thymol, carvacrol, 1’S-1’- acetoxychavicol acetate, cinnamaldehyde, α-n-hexyl cinnamic aldehyde and thymoquinone as well as isothiocyanates and sulfides are discussed

    Supplementary Material for: Ara h 2 and Ara h 6 Have Similar Allergenic Activity and Are Substantially Redundant

    No full text
    <b><i>Background:</i></b> The moderately homologous (approx. 60%) proteins Ara h 2 and Ara h 6 are the most potent peanut allergens. This study was designed to define the relative individual contributions of Ara h 2 and Ara h 6 to the overall allergenic activity of a crude peanut extract (CPE). <b><i>Methods:</i></b> Ara h 2 and Ara h 6 were removed from CPE by gel filtration chromatography. Ara h 2.01, Ara h 2.02 and Ara h 6 were further purified (>99%). The potency of each allergen and the ability of these allergens to reconstitute the allergenic activity of CPE depleted of Ara h 2 and Ara h 6 was measured with RBL SX-38 cells sensitized with IgE from sensitized peanut allergic patients. <b><i>Results:</i></b> The potency of the native proteins were significantly different (p < 0.0001) although not dramatically so, with a rank order of Ara h 2.01 > Ara h 2.02 > Ara h 6. The addition of either purified Ara h 2 or Ara h 6 independently at their original concentration to CPE depleted of both Ara h 2 and Ara h 6 restored 80–100% of the original CPE allergenic activity. Addition of both Ara h 2 and Ara h 6 consistently completely restored the allergenic activity of CPE. <b><i>Conclusions:</i></b> These studies indicate that either Ara h 2 or Ara h 6 independently can account for most of the allergenic activity in a CPE and demonstrate important redundancy in the allergenic activity of these related molecules

    Role of TREM1-DAP12 in Renal Inflammation during Obstructive Nephropathy

    Get PDF
    Contains fulltext : 125853.pdf (publisher's version ) (Open Access)Tubulo-interstitial damage is a common finding in the chronically diseased kidney and is characterized by ongoing inflammation and fibrosis leading to renal dysfunction and end-stage renal disease. Upon kidney injury, endogenous ligands can be released which are recognized by innate immune sensors to alarm innate immune system. A new family of innate sensors is the family of TREM (triggering receptor expressed on myeloid cell). TREM1 is an activating receptor and requires association with transmembrane adapter molecule DAP12 (DNAX-associated protein 12) for cell signaling. TREM1-DAP12 pathway has a cross-talk with intracellular signaling pathways of several Toll-like receptors (TLRs) and is able to amplify TLR signaling and thereby contributes to the magnitude of inflammation. So far, several studies have shown that TLRs play a role in obstructive nephropathy but the contribution of TREM1-DAP12 herein is unknown. Therefore, we studied TREM1 expression in human and murine progressive renal diseases and further investigated the role for TREM1-DAP12 by subjecting wild-type (WT), TREM1/3 double KO and DAP12 KO mice to murine unilateral ureter obstruction (UUO) model. In patients with hydronephrosis, TREM1 positive cells were observed in renal tissue. We showed that in kidneys from WT mice, DAP12 mRNA and TREM1 mRNA and protein levels were elevated upon UUO. Compared to WT mice, DAP12 KO mice displayed less renal MCP-1, KC and TGF-beta1 levels and less influx of macrophages during progression of UUO, whereas TREM1/3 double KO mice displayed less renal MCP-1 level. Renal fibrosis was comparable in WT, TREM1/3 double KO and DAP12 KO mice. We conclude that DAP12, partly through TREM1/3, is involved in renal inflammation during progression of UUO
    corecore